
DYNAMIC ONE-PILE NIM

Arthur Holshouser

3600 Bullard St.

Charlotte, NC, USA

Harold Reiter

Department of Mathematics,

University of North Carolina Charlotte,

Charlotte, NC 28223, USA

hbreiter@email.uncc.edu

James Rudzinski

Undergraduate, Dept. of Math.

UNC Charlotte

Charlotte, NC 28223

August 12, 2003

1



Introduction The purpose of this paper is to solve a class of combinatorial games

consisting of one-pile counter pickup games for which the maximum number of counters

that can be removed on each successive move changes during the play of the game. Two

players alternate removing a positive number of counters from the pile. An ordered pair

(N, x) of positive integers is called a position. The number N represents the size of the

pile of counters and x represents the greatest number of counters that can be removed

on the next move. A function f : Z+ −→ Z+ is given which determines the maximum

size of the next move in terms of the current move size. Thus a move in a game is an

ordered pair of positions (N, x) 7−→ (N − k, f(k)), where 1 ≤ k ≤ min{N, x}. The game

ends when there are no counters left, and the winner is the last player to move in the

game. This paper extends two papers, one by Epp and Ferguson[2], and the other by

Schwenk[6].

In order to introduce the concepts in this paper, we initially assume that f satisfies

(∗) f(n + 1)− f(n) ≥ −1.

Later in the paper we prove the necessary and sufficient conditions on f so that our

strategy is effective. In the appendix, we discuss the Epp, Ferguson paper. The authors

are grateful to the referee for pointing out the possibility of finding both necessary and

sufficient conditions on the function f so that the solution is effective.

The game of ‘static’ one-pile nim is well understood. These are called subtraction

games. A pile of n counters and a constant k are given. Two players alternately take

from 1 up to k counters from the pile. The winner is the last player to remove a counter.

The theory of these games is complete. See [1, page 83].

Before discussing the strategy for playing dynamic one-pile nim, we prove four lemmas.

These lemmas appear to have nothing in common with our games, but once they are

proved, the strategy for playing will be easily understood.

Generalized Bases An infinite increasing sequence B = (b0 = 1, b1, b2, . . .) of positive

integers is called an infinite g-base if for each k ≥ 0, bk+1 ≤ 2bk. This ‘slow growth’ of

B’s members guarantees lemma 1. Finite g-bases. A finite increasing sequence B = (b0 =

1, b1, b2, . . . bt) of positive integers is called as finite g-base if for each 0 ≤ k < t, bk+1 ≤ 2bk.

Lemma 1. Let B be an infinite g-base. Then each positive integer N can be represented

as N = bi1 + bi2 + · · ·+ bit where bi1 < bi2 < · · · < bit and each bij belongs to B.

Proof. The proof is given by the following recursive algorithm. Note first that b0 =

1 ∈ B. Suppose all the integers 1, 2, 3, . . . ,m − 1 have been represented as a sum of

distinct members of B. Let bk denote the largest element of B not exceeding m. That

is, bk ≤ m < bk+1. Then m = (m − bk) + bk. Now m − bk < bk, for otherwise 2bk ≤ m.
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But bk+1 < 2bk, contradicting the definition of bk. Since m− bk is less than m, it follows

that m− bk has been represented as a sum of distinct members of B that are less than bk.

Thus we may suppose that m− bk = bi1 + bi2 + · · ·+ bit−1 where bi1 < bi2 < · · · < bit−1 and

each bij belongs to B. Then m = bi1 + bi2 + · · ·+ bit , where bit = bk, bi1 < bi2 < · · · < bit

and each bij belongs to B.

Note that in general it may be possible to represent an integer N as a sum of distinct

members of B in more than one way. We now define a stable representation.

Definition Let B = (b0 = 1, b1, . . .) be an infinite g-base. Suppose N = bi1 + bi2 + · · ·+
bik , where bi1 < bi2 < · · · < bik . We say that this representation of N is stable if for every

t, 1 ≤ t ≤ k,
t∑

θ=1

biθ < bit+1.

Thus, in a stable representation of N , each member bk of B is greater than the sum of all

the summands bik of N that are less than bk.

Lemma 2. Let B = (b0 = 1, b1, . . .) be an infinite g-base. Then each positive integer N

has exactly one stable representation. It is generated by the algorithm used in the proof

of Lemma 1.

Proof. Let us first suppose that N = bi1 + bi2 + · · ·+ bik , where bi1 < bi2 < · · · < bik is

a stable representation of N . We show that this representation is unique and is generated

by the algorithm of Lemma 1. The proof is by mathematical induction on N . For N = 1,

the representation is certainly unique and generated by the algorithm. Next we show that

bik is uniquely generated by the algorithm. Let bs ≤ N < bs+1. Then bik ≤ N < bs+1. If

bik < bs, then N = bi1 + bi2 + · · · + bik < bik+1 ≤ bs, contradicting the assumption that

bs ≤ N < bs+1. Therefore, bik ∈ B, bik ≥ bs, and bik < bs+1 which together imply that

bik = bs. This means that bik is unique and is computed by the algorithm. Now since

N = bi1 + bi2 + · · · + bik is a stable representation of N , it follows from the definition of

stable representation that N − bik = bi1 + bi2 + · · · + bik−1
is a stable representation of

N − bik . Therefore, by induction we see that each of bi1 , bi2 , . . . , bik−1
is also unique and

generated by the algorithm. We next show that any number N has at least one stable

representation. To do this, let N = bi1 + bi2 + · · · + bik , where bi1 < bi2 < · · · < bik ,

be generated by the algorithm. We prove by induction on N that this representation is

stable. Again the case N = 1 is trivial. Suppose bs ≤ N < bs+1. Then by definition of

the algorithm, bik = bs and

N =
k∑

θ=1

biθ < bs+1 = bik+1.
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Note that N − bik = bi1 + bi2 + · · ·+ bik−1
. Also, by definition of the algorithm, we see that

each of bi1 , bi2 , . . . , bik−1
is generated by the algorithm using the number N−bik . Therefore,

by induction on N − bik , we know that bi1 + bi2 + · · · + bik−1
is a stable representation

of N − bik . Therefore, by the definition of stable representation, we know that for every

1 ≤ t ≤ k − 1,
t∑

θ=1

biθ < bit+1.

Therefore, for every 1 ≤ t ≤ k,

t∑
θ=1

biθ < bit+1.

Generating g-bases For every function f : Z+ → Z+ satisfying

(∗) f(n + 1)− f(n) ≥ −1,

we generate a g-base Bf as follows:

Let b0 = 1. Suppose (b0, b1, . . . , bk) have been generated. Then bk+1 = bk + bi, where bi is

the smallest member of {b0, b1, . . . , bk} such that f(bi) ≥ bk, if such a bi exists. If no such

bi exists for some k, the base Bf is finite. In this part of the paper we assume that Bf

is infinite. As an example, if f(n) = 2n, then Bf = {1, 2, 3, 5, 8 . . .} and we have what is

called Fibonacci Nim.

For lemmas 3 and 4 we assume that Bf = (b0 = 1, b1, . . .) is the infinite g-base

generated by a function f satisfying the inequality (∗), and that the positive integer N

has stable representation N = bi1 + bi2 + · · ·+ bik with bi1 < bi2 < · · · < bik .

Lemma 3. f(bi1) < bi2 .

Proof. Because the representation is stable, bi1 + bi2 < bi2+1 ≤ bi3 . Now bi2+1 = bi2 + bi

where bi is the smallest member of b0, b1, . . . , bi2 such that f(bi) ≥ bi2 . Since bi2 + bi1 <

bi2+1, it follows that bi is larger than bi1 . Since bi is the smallest member of {b0, b1, . . . , bi2}
such that f(bi) ≥ bi2 , it follows that f(bi1) < bi2 .

Lemma 4. Suppose integer x satisfies 1 ≤ x < bi1 . Let bi1 − x = bj1 + bj2 + · · ·+ bjt be

the stable representation of bi1 − x in Bf , where bj1 < bj2 < · · · < bjt . Then

(1) N −x = bj1 + bj2 + · · ·+ bjt + bi2 + bi3 + · · ·+ bik is the stable representation of N −x

in Bf and

(2) bj1 ≤ f(x).

Proof. The proof of (1) is trivial. The proof of (2) is by mathematical induction on t. We

consider below two cases, the first of which takes care of t = 1.
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Case (a): 1 ≤ bi1 − x ≤ bi1−1.

Case (b): bi1−1 < bi1 − x < bi1 .

In case (a), we show that f(x) ≥ bi1 − x. Since bi1 − x = bj1 + bj2 + · · · + bjt , it follows

that f(x) ≥ bj1 . Now bi1 = bi1−1 + bi, where bi is the smallest member of b0, b1, . . . , bi1−1

such that f(bi) ≥ bi1−1. Therefore, f(bi) = f(bi1 − bi1−1) ≥ bi1−1. Note that the condition

f(n + 1)− f(n) ≥ −1 can be used repeatedly to see that f(n + N)− f(n) ≥ −N . Thus

f(n + N) ≥ f(n)−N and

f(x) = f (bi1 − bi1−1 + [bi1−1 − (bi1 − x)])

≥ f(bi1 − bi1−1)− [bi1−1 − (bi1 − x)]

= f(bi) + bi1 − bi1−1 − x

≥ bi1−1 + bi1 − bi1−1 − x = bi1 − x,

since f(bi) ≥ bi1−1. That is, f(x) ≥ bi1 − x. Note that case (a) completely takes care of

the lemma when t = 1 and starts the mathematical induction on t.

Case (b) Since bi1 − x = bj1 + bj2 + · · ·+ bjt is stable where bj1 < bj2 < · · · < bjt and since

bi1−1 < bi1 − x = bj1 + bj2 + · · · + bjt < bi1 , we know from lemma 2 (or directly from the

definition of stable itself) that bjt = bi1−1. Therefore,

x = bi1 − (bj1 + bj2 + · · ·+ bjt)

= (bi1 − bi1−1)− (bj1 + bj2 + · · ·+ bjt−1)

Now bi1 = bi1−1 + bi where bi is the smallest member of b0, b1, . . . , bi1−1 such that f(bi) ≥
bi1−1. Therefore x = bi− (bj1 + bj2 + · · ·+ bjt−1); that is, bj1 + bj2 + · · ·+ bjt−1 = bi− x. Of

course, bj1 + bj2 + · · ·+ bjt−1 is stable. Therefore, by mathematical induction, f(x) ≥ bj1 .

Theorem 1 puts these four lemmas together to establish a strategy for playing dynamic

one-pile nim optimally when Bf is infinite.

Theorem 1. Suppose the dynamic one-pile nim game with initial position (N, x) and move

function f satisfying (∗) is given, and the g-base Bf is infinite. Also, let N = bi1 + bi2 +

· · · + bik be the stable representation of N in Bf , where bi1 < bi2 < · · · < bik . Then the

first player can win if x ≥ bi1 and the second player can win if x < bi1 .

Proof. Assuming x ≥ bi1 , the first player removes bi1 counters. This move results in the

position (N−bi1 , f(bi1)) = (bi2 +bi3 + · · ·+bik , f(bi1)). Note that the number of summands
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in the stable representation of the pile size N of the position has been reduced. Also, the

representation of N − bi1 is stable and, by lemma 3, f(bi1) < bi2 .

Thus the second player must remove fewer than bi2 counters. Suppose the second player

removes x′ counters, where 1 ≤ x′ < bi2 . Thus the second player has moved to a position

(N−bi1−x′, f(x′)) = (bi2+bi3+· · ·+bik−x′, f(x′)) = (bj1+bj2+· · ·+bjt+bi3+· · ·+bik , f(x′)),

where bj1 + bj2 + · · ·+ bjt is the stable representation of bi2 − x′. By lemma 4, parts 1 and

2, bj1 + bj2 + · · ·+ bjt + bi3 + · · ·+ bik is the stable representation of bi2 + bi3 + · · ·+ bik −x′

and bj1 ≤ f(x′).

Note that the second player has not reduced the number of summands, and after his

move, bj1 ≤ f(x′). The first player is therefore in a position analogous to the initial

position, since bj1 ≤ f(x′). The first player can now reduce the pile by bj1 counters, which

again reduces the number of summands. Thus the first player can reduce the number of

summands and the second player cannot. This means that the first player will eventually

reduce the number of summands to zero, thereby winning.

When the initial position satisfies x < bi1 , the second player wins by using the first

player’s strategy in the case above, that is, by reducing the pile size by the smallest

number bi1 that appear in the stable representation of the pile size.

Next we discuss the case in which the g-base Bf is finite. Note that when f is bounded,

Bf is finite. However, a finite g-base is possible even when f is unbounded. As an example

consider f : Z+ → Z+ defined by f(1) = f(2) = f(3) = 2 and f(n) = n for all n ≥ 4.

This function satisfies the unit jump condition f(n + 1) − f(n) ≥ −1. Its g-base is

b0 = 1, b1 = b0 + b0 = 2, b2 = b1 + b0 = 3. Of course, b3 does not exist because there is

no member bi ∈ {b0, b1, b2} = {1, 2, 3} such that f(bi) ≥ b2 = 3. Thus the g-base is finite.

The proofs of the following four lemmas and the theorem parallel very closely the proofs

of the corresponding four lemmas and the theorem for infinite g-bases.

Lemma 1′. Let B = (b0 = 1, b1, b2, . . . , bt) be a finite g-base. Then each positive integer

N can be represented as a sum of distinct members of B allowing multiple copies of the

largest element of B:

N = bi1 + bi2 + · · ·+ bik + θbt,

where bi1 < bi2 < · · · < bik < bt for some integer θ ≥ 0.

As we noted in the case for infinite g-bases, there may be multiple representations.

Thus we have the following definition of stable representation.

Definition Let B = (b0 = 1, b1, . . . , bt) be a finite g-base. Suppose N = bi1 + bi2 + · · · +
bik + θbt, where bi1 < bi2 < · · · < bik < bt and θ is a nonnegative integer. We say that this
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representation of N is stable if for every h, 1 ≤ h ≤ k,

h∑
φ=1

biφ < bih+1.

Lemma 2′. Let B = (b0 = 1, b1, . . . , bt) be a finite g-base. Then each positive integer

N has exactly one stable representation.

For lemmas 3′ and 4′ we assume that Bf = (b0 = 1, b1, . . . , bt) is the finite g-base

generated by a function f : Z+ −→ Z+ satisfying the inequality (∗), and that the positive

integer N has stable representation N = bi1 + bi2 + · · · + bik + θbt with bi1 < bi2 < · · · <

bik < bt and θ is a nonnegative integer.

Lemma 3′. f(bi1) < bi2 .

Note that for all bi ∈ Bf , f(bi) < bt. This is why Bf is finite.

Lemma 4′. Suppose integer x satisfies 1 ≤ x < bi1 . Let bi1 − x = bj1 + bj2 + · · · + bjh

be the stable representation in Bf , where bj1 < bj2 < · · · < bjh
. Then

1. N − x = bj1 + bj2 + · · ·+ bjh
+ bi2 + bi3 + · · ·+ bik + θbt is the stable representation

of N − x in Bf and

2. bj1 ≤ f(x).

Theorem 1′. Suppose the dynamic one-pile nim game with initial position (N, x) and

move function f satisfying (∗) is given, and the g-base Bf = (b0 = 1, b1, b2, . . . , bt) is

finite. Also, let N = bi1 + bi2 + · · · + bik + θbt be the stable representation of N in Bf ,

where bi1 < bi2 < · · · < bik < bt. Then the first player can win if x ≥ bi1 and the second

player can win if x < bi1 . In the special case where N = θbt, the first player can win if

x ≥ bt, and the second player can win if x < bt.

We now turn our attention to the converse problem. Let f : Z+ → Z+ be any function.

We find necessary and sufficient conditions on f so that theorem 1 is true. We generate

a g-base Bf = (b0 = 1, b1, . . .) from f just as before. For convenience, we assume Bf is

infinite. Lemmas 1-3 remain true since they do not depend on the condition

(∗) f(n + 1)− f(n) ≥ −1.

Also, in the proof of lemma 4, only case (a) of property (2) used property ∗ on f .
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Definition. For any positive integer N , let N = bi1 + bi2 + . . . + bik be the stable

representation of N in Bf , where bi1 < bi2 < . . . < bik . Then we define g(N) = bi1 . Also,

g(0) = g(−N) = 0.

Lemma 5. Given f : Z+ → Z+, theorem 1 is true for f if and only if lemma 4 is true

for f .

Proof. Obviously lemma 4 implies theorem 1. We now show that if lemma 4 is false, then

theorem 1 is false. Since part (1) of lemma 4 is trivial, we can use the definition of g to

see that lemma 4 is equivalent to the statement for all bθ ∈ Bf , and for all 1 ≤ x < bθ,

g(bθ − x) ≤ f(x).

No matter what f is, b0 = 1, b1 = 2, g(1) = 1, g(2) = 2 holds. Therefore, g(bθ − x) ≤ f(x)

holds when bθ ∈ {b0, b1} and 1 ≤ x < bθ for all f . Define bφ to be the smallest member of

{b2, b3, b4, . . .} such that g(bφ − x) > f(x) for some 1 ≤ x < bφ. By definition of bφ, this

means that lemma 4 is true for all bθ ∈ {b0, b1, . . . , bφ−1} and all 1 ≤ x < bθ. This means

that theorem 1 holds for all positions (N, x) when 1 ≤ N < bφ since the base members

bφ, bφ+1, bφ+2, . . . do not come into play when N < bφ. Next consider the position (bφ, x)

as described above. Of course, 1 ≤ x < bφ and g(bφ − x) > f(x). We will show that

(bφ, x) is an unsafe position, which contradicts theorem 1. Let the first player remove x

counters so that (bφ, x) 7→ (bφ − x, f(x)). Since bφ − x < bφ, theorem 1 correctly tells us

whether (bφ − x, f(x)) is safe or unsafe. Because f(x) < g(bφ − x), theorem 1, along with

the definition of g tells us that (bφ− x, f(x)) is a safe position. This means that (bφ, x) is

an unsafe position.

Lemma 6. The necessary and sufficient conditions on f so that lemma 4 holds is that

for all bi1 ∈ {b1, b2, . . .}, and for all 1 ≤ bi1 − x ≤ bi1−1, g(bi1 − x) ≤ f(x). Proof. First

note that part (1) of lemma 4 is a trivial statement and can be ignored. So what we are

saying here is that lemma 4 is true if and only if lemma 4 is true for part (2), case (a). Note

in part (2) that bj1 = g(bi1 −x), from the definition of g, since bi1 −x = bj1 + bj2 + · · ·+ bjt

is the stable representation of bi1 − x in Bf and bj1 < bj2 < . . . bjt .

The reason lemma 4 is true if and only if lemma 4 is true for part (2), case (a) is that

the only place in the proof of lemma 4 where the property ∗ is used is in proving part

(2), case (a). Since we have dropped the condition ∗ on f , the only way that we can now

deal with part (2), case (a) is just to assume that lemma 4 is always true for part (2),

case (a). Thus part (2), case (a) becomes the necessary and sufficient condition on f for

lemma 4 to hold.

Definition. For all nonnegative integers k, let

bθ(k) = bk+1 − bk,
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where bθ(k) ∈ {b0, b1, b2, . . . , bk}.
Lemma 7. The following two conditions are equivalent.

1. For all bk+1 ∈ {b1, b2, . . .} and for all 1 ≤ bk+1 − x ≤ bk,

g(bk+1 − x) ≤ f(x).

2. For all nonnegative integers k and for all nonnegative integers x,

g(bk − x) ≤ f(bθ(k) + x).

Note that (1) is a restatement of the condition in lemma 6. Also, (2) uses g(0) = g(−N) =

0.

Proof. We first show that (1) implies (2). Since g(0) = g(−N) = 0, let us assume 1 ≤ bk−
x. Let x = bθ(k) +x. Thus, x = bk+1−bk +x. Therefore 1 ≤ bk+1−x = bk−x ≤ bk. Hence

from (1), g(bk+1 − x) = g(bk − x) ≤ f(x) = f(bθ(k) + x). That is g(bk − x) ≤ f(bθ(k) + x).

We now show that (2) implies (1). Since bk+1 − x ≤ bk, define x by bk+1 − x + x = bk,

where x ≥ 0. Therefore, bk − x = bk+1− x. Also, x = bk+1− bk + x = bθ(k) + x. Therefore

from (2), g(bk − x) = g(bk+1 − x) ≤ f(bθ(k) + x) = f(x). That is, g(bk+1 − x) ≤ f(x).

Main Theorem. Given f : Z+ → Z+ with an infinite Bf , the necessary and sufficient

conditions on f so that theorem 1 holds for f is that for all nonnegative k and x

g(bk − x) ≤ f(bθ(k) + x).

Since g(N) ≤ N observe that the following are sufficient but not necessary conditions

on f for theorem 1 to hold: for all nonnegative integers k and x,

f(bθ(k) + x) ≥ bk − x. Recall that f(bθ(k)) ≥ bk from the definition of Bf . From this it is

easy to see that the original restriction (∗) on f implies f(bθ(k) + x) ≥ bk − x.

The following theorem allows the main theorem to be used more efficiently since we

only have to worry about f(x) when x is not in the base Bf .

Theorem 2. Suppose that f : Z+ → Z+ generates the infinite g-base Bf = {b0 =

1, b1, b2, . . .}, and f is non-decreasing on Bf . Then f satisfies the hypothesis of the main

theorem if and only if the following is true for each x not in Bf . Suppose bt < x < bt+1.

Also, suppose bθ(k) < x < bk+1 if and only if k ∈ {t, t + 1, t + 2, . . . , t + t}. Then for this

x, we require g(bt+i − x) ≤ f(x) for i = 1, 2, 3, . . . t + 1.

The proof of this, which uses part 1 of lemma 7 is left to the reader. Using this

theorem, we see that f generates the Fibonacci base Bf = {1, 2, 3, 5, 8, 13, . . .} and the
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main theorem is effective for f if and only if the following two conditions hold: a. for

every bt ∈ Bf , bt+1 ≤ f(bt) < bt+2 and b. for all nonnegative integers t, and all x satisfying

bt < x < bt+1, g(bt+1 − x) ≤ f(x). Note the g(bt+1 − x) = g(bt+2 − x) when bt < x < bt+1,

so g(bt+2 − x) ≤ f(x) is redundant.

The misère version To win at the misère version (N, x) of dynamic nim, simply use

the theory to win the game (N − 1, x), so that your opponent is forced to take the last

counter.

Appendix We now discuss theorem 2.1 of the Epp Ferguson paper. Let f : Z+ → Z+

be an arbitrary function defining our one pile dynamic nim game. If a player is confronted

with a pile size of n ≥ 1, let L(n) denote the smallest possible winning move. Of course,

L(n) ≤ n and equality might hold. Note also that removing k counters from a pile of

n is a winning move if and only if f(k) < L(n − k), where L(0) = ∞. Theorem 2.1

(Epp, Ferguson): Suppose f(k) < L(n − k). Then k = L(n) if and only if L(k) = k.

Epp and Ferguson prove this when f is non-decreasing. The reader can easily show that

if f satisfies the condition of our main theorem, then L(L(n)) = L(n) for all positive

integers n. The following example shows that Theorem 2.1 breaks down when f is not

non-decreasing.

Example. There exists f satisfying f(n + 1) − f(n) ≥ −1 such that there ex-

ists k < n with f(k) < L(n − k), L(k) = k, and k 6= L(n). Proof. Consider f de-

fined by f(n) = 8 − n when 1 ≤ n ≤ 7 and f(n) = n when 8 ≤ n. Then Bf =

{1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, . . .}. Since 9 = 8 + 1, we see that L(9) = 1. Con-

sider the position (9, 8). We see that the following are all winning moves:

(9, 8) 7→ (9− 7, f(7)) = (2, 1), L(7) = 7 6= L(9) = 1,

(9, 8) 7→ (9− 6, f(6)) = (3, 2), L(6) = 6 6= L(9),
...

(9, 8) 7→ (9− 2, f(2)) = (7, 6), L(2) = 2 6= L(9).

The reader might like to show that for the following f , L(16) = 10, and L(10) 6= 10:

f(n) = n, n 6= 10, and f(10) = 1. Of course this f does not satisfy the conditions of our

main theorem.
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